If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+v=90
We move all terms to the left:
v^2+v-(90)=0
a = 1; b = 1; c = -90;
Δ = b2-4ac
Δ = 12-4·1·(-90)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*1}=\frac{-20}{2} =-10 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*1}=\frac{18}{2} =9 $
| 7x•5=120 | | 225w^2-30w+1=0 | | p=-60^2+6000 | | 2x=460 | | ∑n=125(3n−2)∑n=125(3n−2) | | 1/2)x+4=(2/3)x+1 | | w-32/7=7 | | X+55+x-13=180 | | 7(t+2)=84 | | -1(1x5)=9 | | x-(-6)=30 | | b+34-34=130-b | | 12x+3=7x+33 | | -8(r-8)+4R=-136 | | 11x+4=3x+36 | | d/6+16=20 | | .75x+7=22+x | | 5x+3=4x+15=180 | | 2(2w+1)+2w=62 | | 9(k+4)=99 | | 5x+3=10x+8 | | s/5-1=7 | | 22/3Xy=61/7 | | 1+9w=46 | | 2x+20=6x+2=2x+28 | | 9x-1=-x=49 | | 3h-42=48 | | 6x+2=2x+20=2x+28 | | 8(t-83=80 | | (7x-7x/5)+(3x+7x/5)/4=3350 | | 3(7+2x)=87 | | 4x+10=2x+24=8x+12 |